19,744 research outputs found

    On the Common Envelope Efficiency

    Full text link
    In this work, we try to use the apparent luminosity versus displacement (i.e., LXL_{\rm X} vs. RR) correlation of high mass X-ray binaries (HMXBs) to constrain the common envelope (CE) efficiency αCE\alpha_{\rm CE}, which is a key parameter affecting the evolution of the binary orbit during the CE phase. The major updates that crucial for the CE evolution include a variable λ\lambda parameter and a new CE criterion for Hertzsprung gap donor stars, both of which are recently developed. We find that, within the framework of the standard energy formula for CE and core definition at mass X=10X=10\%, a high value of αCE\alpha_{\rm CE}, i.e., around 0.8-1.0, is more preferable, while αCE<∼0.4\alpha_{\rm CE}< \sim 0.4 likely can not reconstruct the observed LXL_{\rm X} vs. RR distribution. However due to an ambiguous definition for the core boundary in the literature, the used λ\lambda here still carries almost two order of magnitude uncertainty, which may translate directly to the expected value of αCE\alpha_{\rm CE}. We present the detailed components of current HMXBs and their spatial offsets from star clusters, which may be further testified by future observations of HMXB populations in nearby star-forming galaxies.Comment: 14 pages, 10 figures, 7 tables, accepted for publication in MNRA

    High-Energy Gamma-Rays from GRB X-ray Flares

    Get PDF
    The recent detection of X-ray flares during the afterglow phase of gamma-ray bursts (GRBs) suggests an inner-engine origin, at radii inside the forward shock. There must be inverse Compton (IC) emission arising from such flare photons scattered by forward shock afterglow electrons when they are passing through the forward shock. We find that this IC emission produces high energy gamma-ray flares, which may be detected by AGILE, GLAST and ground-based TeV telescopes. The anisotropic IC scattering between flare photons and forward shock electrons does not affect the total IC component intensity, but cause a time delay of the IC component peak relative to the flare peak. The anisotropic scattering effect may also weaken, to some extent, the suppression effect of the afterglow intensity induced by the enhanced electron cooling due to flare photons. We speculate that this IC component may already have been detected by EGRET from a very strong burst--GRB940217. Future observations by GLAST may help to distinguish whether X-ray flares originate from late central engine activity or from external shocks.Comment: 4 pages, Contributed talk presented at "The First GLAST Symposium", Feb.5-8 2007, Stanford Universit

    On the magnetization of gamma-ray burst blast waves

    Full text link
    The origin of magnetic fields that permeate the blast waves of gamma-ray bursts (GRBs) is a long-standing problem. The present paper argues that in four GRBs revealing extended emission at >100 MeV, with follow-up in the radio, optical and X-ray domains at later times, this magnetization can be described as the partial decay of the micro-turbulence that is generated in the shock precursor. Assuming that the bulk of the extended emission >100 MeV can be interpreted as synchrotron emission of shock accelerated electrons, we model the multi-wavelength light curves of GRB 090902B, GRB 090323, GRB 090328 and GRB 110731A, using a simplified then a full synchrotron calculation with power-law-decaying microturbulence \epsilon_B \propto t^{\alpha_t} (t denotes the time since injection through the shock, in the comoving blast frame). We find that these models point to a consistent value of the decay exponent -0.5 < \alpha_t < -0.4.Comment: 8 pages, 4 figures - discussion added, conclusions unchanged - version to appear in MNRA
    • …
    corecore